Learning The Pandas Library

Learning the Pandas Library PDF Book Detail:
Author: Matt Harrison
Publisher: Createspace Independent Publishing Platform
ISBN: 9781533598240
Size: 50.97 MB
Format: PDF, ePub, Mobi
Category : Data mining
Languages : en
Pages : 212
View: 5206

Get Book

Book Description: Python is one of the top 3 tools that Data Scientists use. One of the tools in their arsenal is the Pandas library. This tool is popular because it gives you so much functionality out of the box. In addition, you can use all the power of Python to make the hard stuff easy! Learning the Pandas Library is designed to bring developers and aspiring data scientists who are anxious to learn Pandas up to speed quickly. It starts with the fundamentals of the data structures. Then, it covers the essential functionality. It includes many examples, graphics, code samples, and plots from real world examples. The Content Covers: Installation Data Structures Series CRUD Series Indexing Series Methods Series Plotting Series Examples DataFrame Methods DataFrame Statistics Grouping, Pivoting, and Reshaping Dealing with Missing Data Joining DataFrames DataFrame Examples Preliminary Reviews This is an excellent introduction benefitting from clear writing and simple examples. The pandas documentation itself is large and sometimes assumes too much knowledge, in my opinion. Learning the Pandas Library bridges this gap for new users and even for those with some pandas experience such as me. -Garry C. I have finished reading Learning the Pandas Library and I liked it... very useful and helpful tips even for people who use pandas regularly. -Tom Z.

Pandas 1 X Cookbook

Pandas 1 x Cookbook PDF Book Detail:
Author: Matt Harrison
Publisher: Packt Publishing Ltd
ISBN: 1839218916
Size: 44.42 MB
Format: PDF, ePub, Mobi
Category : Computers
Languages : en
Pages : 626
View: 2194

Get Book

Book Description: Use the power of pandas to solve most complex scientific computing problems with ease. Revised for pandas 1.x. Key Features This is the first book on pandas 1.x Practical, easy to implement recipes for quick solutions to common problems in data using pandas Master the fundamentals of pandas to quickly begin exploring any dataset Book Description The pandas library is massive, and it's common for frequent users to be unaware of many of its more impressive features. The official pandas documentation, while thorough, does not contain many useful examples of how to piece together multiple commands as one would do during an actual analysis. This book guides you, as if you were looking over the shoulder of an expert, through situations that you are highly likely to encounter. This new updated and revised edition provides you with unique, idiomatic, and fun recipes for both fundamental and advanced data manipulation tasks with pandas. Some recipes focus on achieving a deeper understanding of basic principles, or comparing and contrasting two similar operations. Other recipes will dive deep into a particular dataset, uncovering new and unexpected insights along the way. Many advanced recipes combine several different features across the pandas library to generate results. What you will learn Master data exploration in pandas through dozens of practice problems Group, aggregate, transform, reshape, and filter data Merge data from different sources through pandas SQL-like operations Create visualizations via pandas hooks to matplotlib and seaborn Use pandas, time series functionality to perform powerful analyses Import, clean, and prepare real-world datasets for machine learning Create workflows for processing big data that doesn’t fit in memory Who this book is for This book is for Python developers, data scientists, engineers, and analysts. Pandas is the ideal tool for manipulating structured data with Python and this book provides ample instruction and examples. Not only does it cover the basics required to be proficient, but it goes into the details of idiomatic pandas.

Einf Hrung In Machine Learning Mit Python

Einf  hrung in Machine Learning mit Python PDF Book Detail:
Author: Andreas C. Müller
Publisher: O'Reilly
ISBN: 3960101112
Size: 15.52 MB
Format: PDF
Category : Computers
Languages : de
Pages : 378
View: 2806

Get Book

Book Description: Machine Learning ist zu einem wichtigen Bestandteil vieler kommerzieller Anwendungen und Forschungsprojekte geworden, von der medizinischen Diagnostik bis hin zur Suche nach Freunden in sozialen Netzwerken. Um Machine-Learning-Anwendungen zu entwickeln, braucht es keine großen Expertenteams: Wenn Sie Python-Grundkenntnisse mitbringen, zeigt Ihnen dieses Praxisbuch, wie Sie Ihre eigenen Machine-Learning-Lösungen erstellen. Mit Python und der scikit-learn-Bibliothek erarbeiten Sie sich alle Schritte, die für eine erfolgreiche Machine-Learning-Anwendung notwendig sind. Die Autoren Andreas Müller und Sarah Guido konzentrieren sich bei der Verwendung von Machine-Learning-Algorithmen auf die praktischen Aspekte statt auf die Mathematik dahinter. Wenn Sie zusätzlich mit den Bibliotheken NumPy und matplotlib vertraut sind, hilft Ihnen dies, noch mehr aus diesem Tutorial herauszuholen. Das Buch zeigt Ihnen: - grundlegende Konzepte und Anwendungen von Machine Learning - Vor- und Nachteile weit verbreiteter maschineller Lernalgorithmen - wie sich die von Machine Learning verarbeiteten Daten repräsentieren lassen und auf welche Aspekte der Daten Sie sich konzentrieren sollten - fortgeschrittene Methoden zur Auswertung von Modellen und zum Optimieren von Parametern - das Konzept von Pipelines, mit denen Modelle verkettet und Arbeitsabläufe gekapselt werden - Arbeitsmethoden für Textdaten, insbesondere textspezifische Verarbeitungstechniken - Möglichkeiten zur Verbesserung Ihrer Fähigkeiten in den Bereichen Machine Learning und Data Science Dieses Buch ist eine fantastische, super praktische Informationsquelle für jeden, der mit Machine Learning in Python starten möchte – ich wünschte nur, es hätte schon existiert, als ich mit scikit-learn anfing! Hanna Wallach, Senior Researcher, Microsoft Research

Hands On Data Analysis With Pandas

Hands On Data Analysis with Pandas PDF Book Detail:
Author: STEFANIE. MOLIN
Publisher:
ISBN: 9781789615326
Size: 19.51 MB
Format: PDF, ePub, Mobi
Category :
Languages : en
Pages : 716
View: 7107

Get Book

Book Description:

Python Von Kopf Bis Fu

Python von Kopf bis Fu   PDF Book Detail:
Author: Paul Barry
Publisher: O'Reilly
ISBN: 3960101368
Size: 77.87 MB
Format: PDF, Mobi
Category : Computers
Languages : de
Pages : 620
View: 6196

Get Book

Book Description: Was lernen Sie in diesem Buch? Haben Sie sich schon einmal gewünscht, Sie könnten mit nur einem Buch Python richtig lernen? Mit Python von Kopf bis Fuß schaffen Sie es! Durch die ausgefeilte Von-Kopf-bis-Fuß-Didaktik, die viel mehr als die bloße Syntax und typische How-to-Erklärungen bietet, wird es sogar zum Vergnügen. Python-Grundlagen wie Datenstrukturen und Funktionen verstehen Sie hier schnell, und dann geht es auch schon weiter: Sie programmieren Ihre eigene Web-App, erkunden Datenbank-Management, Ausnahmebehandlung und die Verarbeitung von Daten. Da Python häufig im Data-Science-Umfeld eingesetzt wird, haben in der 2. Auflage diejenigen Techniken ein stärkeres Gewicht bekommen, die in der Welt der Big Data genutzt werden. Wieso sieht dieses Buch so anders aus? In diesem Buch sind die neuesten Erkenntnisse der Kognitionswissenschaft und der Lerntheorie eingeflossen, um Ihnen das Lernen so einfach wie möglich zu machen. Statt einschläfernder Bleiwüsten verwendet dieses Buch eine Vielzahl von Abbildungen und Textstilen, die Ihnen das Wissen direkt ins Hirn spielen – und zwar so, dass es sitzt.

Hands On Data Analysis With Pandas Second Edition

Hands On Data Analysis with Pandas   Second Edition PDF Book Detail:
Author: Stefanie Molin
Publisher:
ISBN: 9781800563452
Size: 38.54 MB
Format: PDF, Mobi
Category :
Languages : en
Pages : 788
View: 5185

Get Book

Book Description: Get to grips with pandas - a fast, versatile, and high-performance Python library for data discovery, data manipulation, data preparation, and handling data for analytical tasks Key Features: Perform efficient data analysis and manipulation tasks using pandas 1.x Apply pandas to different real-world domains with the help of step-by-step examples Become well-versed in using pandas as an effective data exploration tool Book Description: Data analysis has become an essential skill in a variety of domains where knowing how to work with data and extract insights can generate significant value. Hands-On Data Analysis with Pandas will show you how to analyze your data, get started with machine learning, and work effectively with the Python libraries often used for data science, such as pandas, NumPy, matplotlib, seaborn, and scikit-learn. Using real-world datasets, you will learn how to use the pandas library to perform data wrangling to reshape, clean, and aggregate your data. Then, you will learn how to conduct exploratory data analysis by calculating summary statistics and visualizing the data to find patterns. In the concluding chapters, you will explore some applications of anomaly detection, regression, clustering, and classification using scikit-learn to make predictions based on past data. This updated edition will equip you with the skills you need to use pandas 1.x to efficiently perform various data manipulation tasks, reliably reproduce analyses, and visualize your data for effective decision making-valuable knowledge that can be applied across multiple domains. What You Will Learn: Understand how data analysts and scientists gather and analyze data Perform data analysis and data wrangling using Python Combine, group, and aggregate data from multiple sources Create data visualizations with pandas, matplotlib, and seaborn Apply machine learning algorithms to identify patterns and make predictions Use Python data science libraries to analyze real-world datasets Solve common data representation and analysis problems using pandas Build Python scripts, modules, and packages for reusable analysis code Who this book is for: This book is for data science beginners, data analysts, and Python developers who want to explore each stage of data analysis and scientific computing using a wide range of datasets. You'll also find this book useful if you are a data scientist looking to implement pandas in your machine learning workflow. Working knowledge of the Python programming language will assist with understanding the key concepts covered in this book; however, a Python crash-course tutorial is provided in the code bundle for anyone who needs a refresher.

Learning Pandas

Learning pandas PDF Book Detail:
Author: Michael Heydt
Publisher: Packt Publishing Ltd
ISBN: 1787120317
Size: 42.86 MB
Format: PDF, ePub, Mobi
Category : Computers
Languages : en
Pages : 446
View: 4704

Get Book

Book Description: Get to grips with pandas—a versatile and high-performance Python library for data manipulation, analysis, and discovery About This Book Get comfortable using pandas and Python as an effective data exploration and analysis tool Explore pandas through a framework of data analysis, with an explanation of how pandas is well suited for the various stages in a data analysis process A comprehensive guide to pandas with many of clear and practical examples to help you get up and using pandas Who This Book Is For This book is ideal for data scientists, data analysts, Python programmers who want to plunge into data analysis using pandas, and anyone with a curiosity about analyzing data. Some knowledge of statistics and programming will be helpful to get the most out of this book but not strictly required. Prior exposure to pandas is also not required. What You Will Learn Understand how data analysts and scientists think about of the processes of gathering and understanding data Learn how pandas can be used to support the end-to-end process of data analysis Use pandas Series and DataFrame objects to represent single and multivariate data Slicing and dicing data with pandas, as well as combining, grouping, and aggregating data from multiple sources How to access data from external sources such as files, databases, and web services Represent and manipulate time-series data and the many of the intricacies involved with this type of data How to visualize statistical information How to use pandas to solve several common data representation and analysis problems within finance In Detail You will learn how to use pandas to perform data analysis in Python. You will start with an overview of data analysis and iteratively progress from modeling data, to accessing data from remote sources, performing numeric and statistical analysis, through indexing and performing aggregate analysis, and finally to visualizing statistical data and applying pandas to finance. With the knowledge you gain from this book, you will quickly learn pandas and how it can empower you in the exciting world of data manipulation, analysis and science. Style and approach Step-by-step instruction on using pandas within an end-to-end framework of performing data analysis Practical demonstration of using Python and pandas using interactive and incremental examples

Data Science Mit Python

Data Science mit Python PDF Book Detail:
Author: Jake VanderPlas
Publisher: MITP-Verlags GmbH & Co. KG
ISBN: 3958456979
Size: 44.55 MB
Format: PDF, Mobi
Category : Computers
Languages : de
Pages : 552
View: 7301

Get Book

Book Description: Die wichtigsten Tools für die Datenanalyse und-bearbeitung im praktischen Einsatz Python effizient für datenintensive Berechnungen einsetzen mit IPython und Jupyter Laden, Speichern und Bearbeiten von Daten und numerischen Arrays mit NumPy und Pandas Visualisierung von Daten mit Matplotlib Python ist für viele die erste Wahl für Data Science, weil eine Vielzahl von Ressourcen und Bibliotheken zum Speichern, Bearbeiten und Auswerten von Daten verfügbar ist. In diesem Buch erläutert der Autor den Einsatz der wichtigsten Tools. Für Datenanalytiker und Wissenschaftler ist dieses umfassende Handbuch von unschätzbarem Wert für jede Art von Berechnung mit Python sowie bei der Erledigung alltäglicher Aufgaben. Dazu gehören das Bearbeiten, Umwandeln und Bereinigen von Daten, die Visualisierung verschiedener Datentypen und die Nutzung von Daten zum Erstellen von Statistiken oder Machine-Learning-Modellen. Dieses Handbuch erläutert die Verwendung der folgenden Tools: ● IPython und Jupyter für datenintensive Berechnungen ● NumPy und Pandas zum effizienten Speichern und Bearbeiten von Daten und Datenarrays in Python ● Matplotlib für vielfältige Möglichkeiten der Visualisierung von Daten ● Scikit-Learn zur effizienten und sauberen Implementierung der wichtigsten und am meisten verbreiteten Algorithmen des Machine Learnings Der Autor zeigt Ihnen, wie Sie die zum Betreiben von Data Science verfügbaren Pakete nutzen, um Daten effektiv zu speichern, zu handhaben und Einblick in diese Daten zu gewinnen. Grundlegende Kenntnisse in Python werden dabei vorausgesetzt. Leserstimme zum Buch: »Wenn Sie Data Science mit Python betreiben möchten, ist dieses Buch ein hervorragender Ausgangspunkt. Ich habe es sehr erfolgreich beim Unterrichten von Informatik- und Statistikstudenten eingesetzt. Jake geht weit über die Grundlagen der Open-Source-Tools hinaus und erläutert die grundlegenden Konzepte, Vorgehensweisen und Abstraktionen in klarer Sprache und mit verständlichen Erklärungen.« – Brian Granger, Physikprofessor, California Polytechnic State University, Mitbegründer des Jupyter-Projekts

Kubernetes In Action

Kubernetes in Action PDF Book Detail:
Author: Marko Lukša
Publisher: Carl Hanser Verlag GmbH Co KG
ISBN: 3446458247
Size: 56.79 MB
Format: PDF
Category : Computers
Languages : de
Pages : 670
View: 6578

Get Book

Book Description: Mit Kubernetes große Container-Infrastrukturen ausfallsicher verwalten Nach einer Einführung in die typischen Problemstellungen, mit denen Softwareentwickler und Administratoren konfrontiert sind, und wie diese mit Kubernetes gelöst werden können, lernen Sie in einem ersten Beispielprojekt die praktische Umsetzung. Es wird gezeigt, wie eine einfache in einem Container laufende Web-Applikation über ein Kubernetes-Cluster verwaltet werden kann. Im zweiten Teil des Buches lernen Sie die zu Grunde liegenden Konzepte kennen, deren Verständnis unbedingt notwendig ist, um große Container-Cluster mit Kubernetes zu betreiben. Im letzten Teil wird die Funktionsweise von Kubernetes beschrieben und auf weiterführende Aspekte eingegangen. Hier wird außerdem das erworbene Wissen aus den ersten beiden Teilen zusammengeführt, damit Sie den vollen Nutzen aus der Kubernetes-Plattform ziehen können.